6 research outputs found

    Learned Dual-View Reflection Removal

    Get PDF
    Traditional reflection removal algorithms either use a single image as input, which suffers from intrinsic ambiguities, or use multiple images from a moving camera, which is inconvenient for users. We instead propose a learning-based dereflection algorithm that uses stereo images as input. This is an effective trade-off between the two extremes: the parallax between two views provides cues to remove reflections, and two views are easy to capture due to the adoption of stereo cameras in smartphones. Our model consists of a learning-based reflection-invariant flow model for dual-view registration, and a learned synthesis model for combining aligned image pairs. Because no dataset for dual-view reflection removal exists, we render a synthetic dataset of dual-views with and without reflections for use in training. Our evaluation on an additional real-world dataset of stereo pairs shows that our algorithm outperforms existing single-image and multi-image dereflection approaches.Comment: http://sniklaus.com/dualre

    Learning Lens Blur Fields

    Full text link
    Optical blur is an inherent property of any lens system and is challenging to model in modern cameras because of their complex optical elements. To tackle this challenge, we introduce a high-dimensional neural representation of blur−-the lens blur field\textit{the lens blur field}−-and a practical method for acquiring it. The lens blur field is a multilayer perceptron (MLP) designed to (1) accurately capture variations of the lens 2D point spread function over image plane location, focus setting and, optionally, depth and (2) represent these variations parametrically as a single, sensor-specific function. The representation models the combined effects of defocus, diffraction, aberration, and accounts for sensor features such as pixel color filters and pixel-specific micro-lenses. To learn the real-world blur field of a given device, we formulate a generalized non-blind deconvolution problem that directly optimizes the MLP weights using a small set of focal stacks as the only input. We also provide a first-of-its-kind dataset of 5D blur fields−-for smartphone cameras, camera bodies equipped with a variety of lenses, etc. Lastly, we show that acquired 5D blur fields are expressive and accurate enough to reveal, for the first time, differences in optical behavior of smartphone devices of the same make and model

    SunStage: Portrait Reconstruction and Relighting using the Sun as a Light Stage

    Full text link
    Outdoor portrait photographs are often marred by the harsh shadows cast under direct sunlight. To resolve this, one can use post-capture lighting manipulation techniques, but these methods either require complex hardware (e.g., a light stage) to capture each individual, or rely on image-based priors and thus fail to reconstruct many of the subtle facial details that vary from person to person. In this paper, we present SunStage, a system for accurate, individually-tailored, and lightweight reconstruction of facial geometry and reflectance that can be used for general portrait relighting with cast shadows. Our method only requires the user to capture a selfie video outdoors, rotating in place, and uses the varying angles between the sun and the face as constraints in the joint reconstruction of facial geometry, reflectance properties, and lighting parameters. Aside from relighting, we show that our reconstruction can be used for applications like reflectance editing and view synthesis. Results and interactive demos are available at https://grail.cs.washington.edu/projects/sunstage/.Comment: Project page: https://grail.cs.washington.edu/projects/sunstage
    corecore